
SOLVABLE GROUPS - A NUMERICAL APPROACH

THANOS GENTIMIS

Abstract. We give all definitions related to solvable groups and show that
any group of order up to 100 and not 60 is solvable.

1. Introduction

Naturally all the papers and presentations start by exemplifying the importance
of their topics, their various applications. Most of the times a connection to a Fields
medal is constructed (like if that matters). Famous quotes and names are referred
and generally people try to justify their work right from the very start.

This paper has a totally different approach. NOPE! you cannot use this material
to prove big theorems. It has nothing to do with the one million dollars problems.
Some of the computations are absolutely boring. The applications are relatively
limited and the results are confined in this field only.1

Then why even bother? Because it is so darn beautiful to find easy ways in
thought-provoking problems that can be stated so simply and are so difficult to solve
immediately. I just couldn’t resist.2 It is more productive to give a presentation to
people when you are talking about easy stuff.(You can move your hands fast and
this time people DO believe you right away!)

To sum up the only application I could think of would be related to Galois theory
but I am not that smart and my poor mathematical background doesn’t help me
make the connection.

2. Preliminaries

What is the worst way to start a presentation? Throw at them a bunch of
definitions, confuse them with some properties and put a few examples without
going over the details. Well that is exactly how I will start!

For my first trick I will call upon the might of series! Generally in group theory
when we want information about a group we break it up into smaller subgroups and
their quotients and study their properties. General ideas used are those of series
and induction.

Definition 1. Let G be a finite group. A series in G is just a collection of subgroups
of G with the property:

{e} = H0 ≤ H1 ≤ H2 ≤ ... ≤ Hn = G

Date: November 27, 2006.
1If I was not the author I would think that It was a bad idea to attend!
2That and the fact that it is really easy to talk about this things!!!
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Definition 2. A series will be called finite if n in the above definition is finite. A
series will be called normal if Hi E Hi+1 for all i = 0, 1, ..., n− 1.

Ok some examples (without OF COURSE the details)

Example 1.
{[0]} E < [8] > E < [4] > E < [2] > E Z16

Is a normal finite series in Z16.

It is time to give the formal definition of a solvable group. Who made that up
I really don’t know. Lets say that it was common sense and don’t worry about it
now.

Definition 3. A finite (or not3) group will be called Solvable if and only if it
contains a normal series such that all the quotients are abelian groups.

Another way to define a group to be solvable is the following.

Definition 4. A group is said to be solvable if the derived series ends with {e}.
Since I am not going to be talking about derived series you can just forget about

the above definition.
Notice that we get immediately:

Remark. Every abelian group is solvable. Since

{e}E G

is a good series!

So simple to state and difficult to compute even in small numbers sometimes.
Pay attention to the following example. We will state it here (and we will even
bother to prove it!) but in order to actually prove it we need a few more tricks up
our sleave!

Basic Example. If |G| = pk where p is prime and k is a natural number then G
is solvable.

Before we attempt to prove it lets state (without proof once more) the Sylow
theorems and some interesting corollaries which will make our life easier.

Definition 5. Let p be a prime number that divides the order of G. Let k be
the biggest natural number such that pk divides G. All the subgroups of G with
order pk are called p-Sylow subgroups of G. We denote their set to be SylpG and
#SylpG = Np.

1st Sylow Theorem. If p is a prime number and ps divides the order of G then
G has at least one subgroup of order ps.

Especially for the case of pk the theorem tells us that SylpG is non-empty.

2nd Sylow Theorem. Every two p-Sylow subgroups of G are conjugate.

This is not so useful for general computations but it might prove extremely useful
in particular cases.

3rd Sylow Theorem. Np divides the order of G and it is equivalent to 1modp.

3but we don’t want to go there... believe me we DO NOT!
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Also another good tool in this theory coming again as a consequence of Sylow’s
theorems is this:

4th Sylow theorem (Not exactly !). If p divides the order of G and n = Np is
the number of p-Sylow subgroups in G then there exists a homomorphism φ : G →
Sn with Kerφ ≤ NG(P ) and n divides Imφ.

These theorems will prove valuable4 (as all the counting theorems in finite group
theory).

Lets add here three corollaries which are derived immediately by the theorems
above.

Corollary 1. If G has only one p-Sylow subgroup H then H is normal.

Corollary 2. If H E G and |GH | = p or p2 then G
H is abelian.

Corollary 3. The center Z(G) of any group G of order pk, with p prime is non-
trivial. We call these groups p-groups.

Now it is time to state a powerful inductive theorem-tool. Things that follow
are too difficult to prove, so we will only write them down. 5

3. Main Theorems

Theorem-Tool. If G is a group and H is a normal subgroup of G such that H is
solvable and G/H is solvable then G is solvable.

I could comment on the proof but it is absolutely technical and nothing of value
comes from it. Most of the papers that use it give references or leave it as a straight-
forward exercise for the reader6. One can definitely see the inductive character of
this Tool-Theorem.

Time to turn back to our basic example and try to prove it. Lets give it the
form of a theorem.

Theorem 1. If |G| = pk where p is a prime number then G is solvable. In other
words every p-group where p is a prime is solvable.

Proof. By induction on k.
1st Step. For k = 1 our group is a cyclic group of prime order thus it is solvable by

definition.
2nd step. Let the statement hold for all n ≤ k.
3d Step. We will prove that it holds for k = n + 1. By corollary 3 since G is a

p-group Z(G) 6= {e}. Also Z(G) is a normal subgroup of G and Z(G) is
abelian. Thus Z(G) is solvable. Now G/Z(G) is again a p-group or trivial.
If it is trivial then G = Z(G) thus G is abelian hence it is solvable. If it
is not trivial then |G/Z(G)| ≤ pn. So by the inductive step it is solvable.
Using the tool theorem G is also solvable and we are done.

¤
4Never underestimate a procedure that counts something! Mathematicians should be able to

... count!
5Famous familiar quote!
6They don’t say it is easy so It might not even be true!!! Hehe fortunately it is and it can be

found in books like Zassenhause’s or Robinson’s.
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Theorem 2. If |G| = pkqs where p and q are prime numbers k, s ∈ N and 1modp 6=
qt for t = 1, 2, .., s then G is solvable.

Proof. Since Np divides |G| and it is equal to 1modp and since qt 6= 1modp for
t = 1, 2, .., s we get that Np = 1. Let P be the only p-Sylow subgroup of G. P is
a normal subgroup of G. Since the order of P is pk where p is prime we have that
P is a p-group and by our basic example-theorem P is solvable. Also [G : P ] = qs

thus G
P is a q-group and again by our basic example-theorem G

P is solvable. By the
tool theorem, now G is solvable. ¤
Remark. A weaker version of the theorem above is: If |G| = pq where p and q are
distinct prime numbers (p < q) is solvable. This is exactly our previous theorem for
k = s = 1

A harder to prove but still true version of the theorem above is the Burnside
theorem. We will not be using it (very much) but it is something I know and it is
related to solvable groups thus we include it.

Theorem 3. (Burnside) Any group of order pk · qs p,q primes is solvable.

We are not going to use it because this is like a ”tank” in this theory and we are
only after small flies!7

Theorem 4. If |G| = pqr where p < q < r primes then G is solvable.8

Proof. Since Nr divides the order of G and Nr = 1modr, Nr can either be 1 or qp9.

Case a Let Nr = 1 then G has only one r-Sylow subgroup H which is normal cyclic
of order r (thus solvable) and |G/H| = qp which by the remark is solvable. From
the tool-Theorem G is solvable.
Case b) If Nr = p · q. We will show that this leads to contradiction.
• Consider Nq the number of q-Sylow subgroups. Nq divides |G| and Nq = 1modq
thus Nq can be 1, or r · p, or r.
i) If Nq = r · p we get r · p · (q− 1) elements of order q living inside the rp different
q-Sylow subgroups. Consider also the p · q · (r− 1) elements of order p living inside
the pq different r-Sylow subgroups and thus we have:

pqr − pq + rpq − rp = pqr + p(rq − q − r)

elements inside G.
• But since p ≥ 2 we have that q > 2(⇒ q − 1 > 1) and since r > q we get:

rq − q − r = (q − 1)r − q > r − q > 0

Thus:
pqr − pq + rpq − rp = pqr + p(rq − q − r) > pqr = |G|

and we get a contradiction.
ii) If Nq = r then G must contain r(q − 1) elements of order q living inside the r
different q-Sylow subgroups. Also consider the pq(r − 1) elements of order r living
inside the the pq different r-Sylow subgroups. So we have

r(q − 1) + pq(r − 1) = pqr − pq + rq − r

7Never use a tank to kill a fly, its not sportsmanlike!
8You can definitely skip this proof
9This is easy we learned that in kindergarten.
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elements in G.
• But:

q > p ⇒ q − 1 ≥ p ⇒ (q − 1)r ≥ pr > pq

Thus:
(q − 1)r > pq ⇒ qr − r − pq > 0

So:
pqr − pq + rq − r > pqr = |G|

which is again a contradiction.
iii) If Nq = 1. Let Q be the only normal q-Sylow subgroup of G.
• Consider G/Q which is a group of order p · r. The pq(r − 1) elements of order r
in G are distributed among the cosets of Q in G. Since every coset has exactly q
elements we need at least p(r− 1) different cosets to cover all the elements of order
r in G.
• We claim that each of those cosets has order r if we consider it as an element in
G/Q.
• This is true since let a be an element of order r in G that belongs to one of those
cosets. Then the coset is exactly a ·Q.
• The order of the coset must divide the order of the coset group. Thus it can be
either r or p or rp.
• If it is r we are done.
• It cannot be rp since (a ·Q)r = ar ·Q = e ·Q which is the identity element. Thus
o(a ·Q) ≤ r.
• Finally it cannot be p since then (a · Q)p = e · Q ⇒ ap · Q = e · Q ⇒ ap ∈ Q.
But ap belongs to an r-Sylow subgroup. Thus ap ∈ R

⋂
Q where R is an r-Sylow

subgroup.
• But R

⋂
P = {e} since if g ∈ R

⋂
P then o(g)|o(R) and o(g)|o(Q) thus o(g)|r

and o(g)|Q which means o(g)|r and o(g)|q but q,r are different primes thus order
of g is exactly 1 which means that g = e. So ap = e which is a contradiction since
o(a) = r thus r divides p which cannot happen since both of them are different
primes (in fact r > p).
• So we have at least p(q − 1) elements in G/Q with order r. But G/Q has order
p · r. The number of r-Sylow subgroups in G/Q must divide pr and it must be
1modr .
• Obviously it is exactly one meaning G/Q has exactly one r-Sylow subgroup. So
it has at most r − 1 elements of order r all of them inside this r-Sylow subgroup.
• Thus p(r − 1) ≤ r − 1 ⇒ p ≤ 1 which is a contradiction.
• So case b leads to a contradiction and we are done. ¤

One could say that in small orders the problem of Solvability is very much related
to the problem of Simplicity. So ... heads up!!! More definitions coming.

Definition 6. A finite group G is called simple if it has no non-trivial normal
subgroups.

Remark. Again by definition a cyclic group of prime order is not considered sim-
ple10.

10I haven’t got the slightest clue why!
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Example 2. The smallest simple group is A5 which is the alternating group of S5

AKA11 the group of all even permutations of S5. One should know that |A5| = 5!
2 =

60.

This example is left as a really hard (close to impossible), time-consuming, totally
boring, extremely unnerving and useless exercise to the poor reader.

So how do we apply all this things to solid problems? A good exercise is to show
that all groups with order up to 100 except 60 are solvable with as little use of
Burnside’s theorem as possible. For 60 we get our first example of a non-solvable
group which is A5.

In order to make things easier I will use this small but really handy lemma which
can be found in [4].

Lemma 1. If a group G has a subgroup H such that |G| does not divide the i(H)
factorial (i(H)12!), then H contains a non-trivial normal subgroup of G.13 .

Now lets prove these following small lemmas.

Lemma 2. If |G| = 2k · 3 for k ≥ 2 then G is solvable.

Proof. By induction on k.
1st Step It obviously holds for k = 1 where |G| = 6 since then G has only one

3-Sylow subgroup H which is normal,cyclic, abelian, of order 3 and the
quotient G/H is cyclic abelian of order 2.

2nd Step Let the proposition hold for all k=1,2,...,n.
3d Step We will prove that it holds for k=n+1. From Sylow’s theorems we know

that G contains at least on 2-Sylow subgroup of order 2k+1. Lets call that
H. Then i(H) = 3 thus 2k+1 · 3 does not divide 3! = 6. Thus H contains a
normal subgroup of G lets say K. But |K| = 2m thus by our basic example
H is solvable. Also |G/K| = 3 · 2k−m thus by step 2 G/K is solvable.
Finally from our tool theorem G is solvable.

¤
Lemma 3. If |G| = 3k · 22 then G is solvable.

Proof. By induction on k.
1st Step It obviously holds for k=2 where |G| = 12 since then |G| = 22 · 3 and it is

in the previous lemma’s category.
2nd Step Let the proposition hold for all k=1,2,...,n, with n ≥ 1
3d Step We will prove that it holds for k=n+1. Thus n + 1 ≥ 2. From Sylow’s

theorems we know that G contains at least on 3-Sylow subgroup of order
3n+1. Lets call that H. Then i(H) = 22 thus 3n+1 · 22 = 32 · 22 · 3n+1−2 =
36 · ·3n+1−2 does not divide 22! = 24. Thus H contains a normal subgroup
of G lets say K. But |K| = 3m thus by our basic example H is solvable.
Also |G/K| = 22 · 3k−m thus by step 2 G/K is solvable. Finally from our
tool theorem G is solvable.

¤
Lemma 4. If |G| = 2k · 5 then G is solvable.

11AKA means also know as... these are stuff you learn when doing a phd in the States!
12i(h)= index of the subgroup meaning the cardinality of G/H.
13The proof for this is really small and digestible. It is not my style though!
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Proof. By induction on k.
1st Step It obviously holds for k = 1, 2, 3 where |G| = 10, 20, 40 respectively because

we can use theorem 1 in those cases.
2nd Step Let the proposition hold for all k = 1, 2, ..., n, with n ≥ 3.
3d Step We will prove that it holds for k = n+1. We have that k = n+1 ≥ 4. From

Sylow’s theorems we know that G contains at least on 2-Sylow subgroup of
order 2n+1. Lets call that H. Then i(H) = 5 thus 2n+1 ·5 = 24 ·5 ·2n+1−4 =
80 · 2n+1−4 does not divide 5! = 120. Thus H contains a normal subgroup
of G lets say K. But |K| = 2m thus by our basic example H is solvable.
Also |G/K| = 5 · 2k−m thus by step 2, G/K is solvable. Finally from our
tool theorem G is solvable.

¤
If you check our colored map in the end we will find out that there is not so

much proving for me to do14. We only need to consider the few Sporadic Cases as
I will call them15 which are 56,72,84,90.

4. Sporadic Cases

Case 56!. Every group of order 56 is solvable.

Proof. From Sylow’s theorems we know that N7 is either 1 or 8. If it is 1 by now I
am sure you know how to prove that G is solvable. So let it be 8. Again count all
the elements in those groups that are not the identity. We get 8 · 6 = 48 elements.
But again by the Sylow theorems we get that there exists at least one 2-Sylow
subgroup of order 8. If you add them up you get 48+8 = 56 elements which leaves
no room for another 2-Sylow subgroup. Thus G is again solvable by the standard
method! ¤
Case 84!. Every group of order 84 is solvable.

Proof. Obviously |G| = 84 = 7·3·22. Consider the number of the 7-sylow subgroups
of G, N7. Then N7 = 1mod7 and N7 divides 84 thus (N7, 7) = 1 so N7 can be only
1. Lets call this normal 7-sylow subgroup P . Then P is normal, cyclic of order
7, abelian and solvable. Also |GP | = 12 which is solvable by lemma 2. So by our
tool-theorem G is solvable. ¤
Case 72!. Every group of order 72 is solvable.

Proof. Let G be a group with |G| = 23·32. First of all we can use Burnside’s theorem
but there is another way more easy but still not so ... numerical. Unfortunately it
is the only one that I can think of thus I will write it down.
• Consider the number of the 3-sylow subgroups in G. Then easily we can see that
N3 = 1 or N3 = 4.
i) If N3 = 1 we have that there exists only one 3-sylow subgroup lets call it P of
order 9 which is a 3-group thus it is solvable. Also |GP | = 23 thus G

P is a 2-group
thus it is solvable and by the theorem tool G is solvable.
ii) If N3 = 4 by the theorem I named 4th sylow theorem we get that there exists
a homomorphism φ : G → S4. Also 4 divides |Imφ|. And Imφ ≤ S4. Thus

14Which was the purpose for this whole thing!
15Obviously sporadic is a Greek word meaning something like random. Sporades is a complex

of Greek islands that definitely illustrates this randomness !!
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the possible cases for |Imφ| are 4, 8, 12, 24. But we know from the 1st theorem
of homomorphisms that G

Kerφ ' Imφ. Thus if we use Lagrange’s theorem we get
|G|

|Kerφ| = |Imφ| so the possible numbers for the order of kerφ are 18, 9, 6, 3. Thus
Kerφ is a nontrivial normal subgroup of G. By checking our colored map in the
end we can see that in all cases our Kerφ is going to be a solvable group. Also
the numbers for G/Kerφ are 4, 8, 12, 24 so G/Kerφ is also going to be solvable in
every case.(check the colored table in the end again). Thus by our tool theorem G
is solvable. ¤

Case 90!. Every group of order 90 is solvable.

Proof. Let G be a group of order 90 = 2 · 32 · 5

• The number of Sylow 5-groups is 1 or 6.
i) If it is one lets call P the unique cyclic, abelian, solvable 5-sylow subgroup of G.
Then G/P has order 18 and it is solvable by theorem 1. So by our tool theorem G
is solvable.
ii) If there are 6 5-Sylow subgroups in G. This gives us 6 · 4 = 24 elements of order
5 living inside the 6 different 5-Sylow subgroups.

• The number of 3-Sylow subgroups is 1 or 10.
a) If it is 1 lets call Q the unique 3-Sylow subgroup of G. Then Q is a 3-group thus
it is solvable. Also G/Q has order 10 and it is solvable by theorem 1. Thus by the
tool theorem G is solvable.
b) If we have 10, 3-Sylow subgroups, of order 9.

• We cannot have that all 3-Sylow subgroups intersect in {e}, for then we would
have 8*10 = 80 elements of order a divisor of 9 in the 3-Sylow subgroups, leaving
too little room for the 24 elements of order 5 (80 + 24 > 90).

• So there are P, Q, 3-Sylow subgroups that intersect non-trivially. Obviously
|P ⋂

Q| = 3. Let T = P
⋂

Q and S the normalizer of T . Then it is obvious that P
and Q are subgroups of S, since P and Q are abelian and T is a subset of them.
So |S| > 3 + 6 + 6 = 15. Also |S| divides 90. Thus |S| can be 18 or 45 or 90.
• If |S| = 90 that means exactly that S = G which means that T is normal, cyclic,
abelian of order 3 thus solvable. Also G/T has order 30 and thus it is solvable
(check our table). By our tool theorem G is solvable.
• If |S| = 45, it would be a subgroup of index 2 in G and hence normal, and by our
table solvable. Also G/S is of order 2 thus solvable. By our tool theorem G is also
solvable.
• If |S| = 18 then S has index 5. But then |G| = 90 does not divide 5! = 120
thus by our lemma S contains a non-trivial normal subgroup of G. The possible
orders for this subgroup which we will call N are 2,3,6,9,18. In all cases if we check
our table N is solvable. The possible order for G/N are respectively 45,30,15,10,5.
Thus again by our table in the end we get that G/N is solvable in any case. So by
our tool theorem G is again solvable in all cases. DONE!
• This proof uses all the basic tools and the numerical approach. I wouldn’t dream
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of presenting it in a seminar but I believe it is a very beautiful result and it is this
that motivated me in the first place16. ¤

5. Thanks

I would like to send a special thank you to the 42 teem for their invitation which
was the original motivation to write this talk. Keep the ideas running guys. A big
thank you to Prof. P.Tiep who underwent the troublesome procedure of reading
and correcting this paper. Finally a special thanks to prof. G.Tapper for technical
(and general) support. Once more I would like to thank all of you back home who
were patient enough to attend this weird lecture. I would also like to thank the
people that came in this hall to see me. I would like to thank also pr E.Raptis for
first introducing me to this subject17, and professor A.Turrul for inviting me to this
seminar.
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